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Abstract 

We give a survey of recent works relating algebraic languages and formal power 
series with the enumeration of polyominoes (and animals). More precisely, encoding 
these structures with words yields new exact results. 

1. Introduction 

Let ~ be a class of combinatorial objects. Let us suppose that they are 
enumerated by the integer a n according to the value n of  some parameter p. Let us 
further suppose that the corresponding generating function f ( t )  = ~,n >_ oan tn is algebraic. 

Schtitzenberger's methodology in [48,49], consisting in first constructing a 
bijection between the objects ~ and the words of an algebraic language, accounts 
for the explanation for the algebraic nature of  the generating function. Let co be an 
object in f2. Then the parameter p of co turns out to be a number of letters in the 
corresponding word coding of co. This methodology was first illustrated by Cori 
[16], then by Cori and Vauquelin [17] about Tutte formulas on planar maps. The 
reader will find an introduction to the topic in [10,30] and a synthesis by Viennot 
in [52]. Recently, this method has been effectively used to code and countpolyominoes, 
which can be described as a finite connected union of cells (unit squares) in  
the plane ~ x gg; see [31] for instance. A polyomino is displayed in fig. 1. 

The most often studied parameters are the perimeter, which is the length of 
the border of the polyomino, and the area, which is the number of cells. 

Counting polyominoes is a problem in combinatorics which more often than 
not remains unsolved. Yet, some exact formulas dependent on one parameter only 
(e.g. either the perimeter or the area) are proved for some particular types of 
polyominoes. The reader is referred to [37, 38] for examples. However, all the research 
on polyominoes so far has led one to believe that it is a more difficult problem when 
it comes to solving the distribution for two parameters at the same time (e.g. both 
the perimeter and the area). 
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Fig. 1. A polyomino and an associated animal. 

This problem is also well known in statistical physics. Usually, physicists 
consider animals instead of polyominoes, an equivalent object obtained by taking 
the center of each elementary cell (see fig. 1). 

Below, we give several examples in which Schtitzenberger's methodology has 
solved open problems in the field of polyominoes. 

We shall begin with a brief review of the problems around polyominoes and 
also introduce the methodology. We shall conclude with new features. 

2. Polyominoes and animals 

The study of polyominoes contains a large set of problems. Their study is 
connected to partition problems, but the first book oil this subject is due to 
Golomb [31] in 1965. It was preceded by some papers by Gardner in 1958 in the 
Scientific American [29]. See also the nice paper by Klamer, "My life among 
polyominoes" [37]. There are two classes of problems when dealing with polyominoes. 
The first one aims at enumerating them according to the perimeter and/or the area, 
and the second at spanning the plane with a set of polyominoes having a given 
area [32, 53]. 

This does not lead to enumeration problems but rather to algorithms allowing 
us to obtain a polyomino by spanning it with a smaller one [5,6], by superimposing 
rectangles [53]. Here are some possible applications: 

• design of VLSI [14], the shadow of a VLSI circuit is a polyomino, 

• storage of images [1,13], the periphery is a polymino. 

We are interested in enumerating polyominoes. Generally speaking, only 
asymptotic results are known, the latest ones being Guttmann's [34]. Thus, many 
people take particular polyominoes into account in order to get some approaches 
to the general problem. To describe particular cases, let us define a column (rest~ctively, 
row) of a polyomino as the intersection with an infinite vertical (respectively, 
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horizontal) strip of  cells. A polyomino is column-convex  (respectively, row-convex)  
if every colum (respectively, row) is connected. It is convex if it is both row- and 
column-convex. See the examples in fig. 2. 
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Fig. 2. Some types of  polyominoes.  

An animal  is a set of  points of  IN × A r such that every pair of  points of  the 
animal can be connected by a path (sequence of  points) included in the animal and 
having elementary steps North, East, South and West. Animals are related to the 
percolation problem, and many results have been published on this subject [45]. 
Physicists attempt to find some relations for the number a n of  animals having area 
or perimeter n. They look for asymptotic results in the form a n = #nn-°.  The exponent 
0 is called the universali ty  class of  the model and n the connecting constant. 

Recently, the interest was in directed animals. They are related to some gas 
lattice models. An animal is said to be directed if it contains a set of  s points (called 
roots or source points) lying on the line x + y = s - 1, such that any other point in 
the animal can be reached from one of  the roots by a path making only North or 
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Fig. 3. A directed polyomino and an associated animal. 

East steps in the lattice plane within the animal (see fig. 3). The surprising result 
was that exact results can be found for this class of  animals [41,25, 26, 36]. See [51 ] 
for a survey. 
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Note that polyominoes are obtained from animals by placing a unit square 
with vertices at integer points for each point of the animal. Thus, we shall say that 
a polyomino is directed if the associated animal is directed, and in the following 
we shall only use the word polyomino. Let P be a polyomino. The enumeration is 
made according to the following parameters: 

• the bond perimeter p(P),  that is, the length of the border of the polyomino, 

• the site perimeter s(P) ,  that is, the number of squares (respectively, unit 
cells) outside and adjacent to the boundary of the polyomino (respectively, 
animal), 

• the area a(P) ,  that is, the number of squares (respectively, unit cells) of the 
polyomino (respectively, animal). 

3. Schi i tzenberger 's  methodology 

Let X = {x 1, x 2 . . . . .  xk} be an alphabet. We denote by X* the free monoid 
generated by X, that is, the set of words (finite sequences of letters from X). The 
empty word  is denoted by e. The number of occurrences of the letter x in the word 
w is denoted by [w Ix, the length (number of letters) of w by [w [. Let ~ be a class 
of objects for which a parameter Jr is to be studied. Sch~itzenberger's methodology 
is based upon four steps: 

(1) code the objects of [2 by the words of an algebraic language L preserving ~r; 

(2) write out a non-ambiguous grammar 2/generating the language £ ;  

(3) solve the algebraic system associated to flirt commutative variables, obtaining 
a generating function F (or a functional equation) for the language L; 

(4) compute, using F, an exact formula or an asymptotic expression for the 
number of objects in [2 having a given value for the studied parameter ~r. 

For example, let ~ be the class of stack polyominoes. A stack po lyomino  S 
is a convex polyomino given by two paths 77 and A from (0, 0) to (k, 0). The path 
77 makes only East steps. In the first part, A makes only North and East steps, then 
after an East step makes only South and East steps (see fig. 4). 

The first step consists of coding the stack polyominoes using a word w of 
{x, a}*, such that 

(i) w is in (x+  a)*, 

(ii) lW]~ is even. 

These words constitute the language L. This coding is immediately obtained translating 
the path ~,: each East step is translated by the letter x with the exception of the 
middle one, and each North or South step by a letter a, with the exception of the 
first and last (see fig. 6). Then, we have p(S)  = I w la + 2 I w Ix + 4. 
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Fig. 4. A stack polyomino and its coding. 

In the second step, we write the non-commutat ive  system o f  equations associated 
with the p rev ious  language 

L = a L a L l  + X L  + e, 

L 1 = E+ x L  1, 

where  

L = E w .  
w E L  

(1) 

(2) 

The  first equat ion  means  that a n o n - e m p t y  word w i n / : , h a s  the form w = x w ' ,  
with w '  in L or  w =  a w l a w  2, with w I in /5 and w 2 in {x}* 

In the third step, by commut ing  the var iables ,  we obtain the commuta t ive  

image  o f  L 

l (x ,  a) = 
1 - x  

(1 - X )  2 - a 2 . 

This  func t ion  enumera tes  the stack po lyominoes  accord ing  to its height  and width.  
F rom it, one  can easi ly p rove  as an example  o f  the fourth step, the fo l lowing  

PROPOSITION 1 

The  n u m b e r  o f  stack po lyominoes  whose  per imete r  is 2p + 4 is the F ibonacc i  
n u m b e r  F2p. 
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4. Enumeration of polyominoes using this methodology 

Knuth asked the question: what is the number of convex polyominoes [38]? 
In 1984, Delest and Viennot enumerated these according to the perimeter [24]. They 
showed that the number of convex polyominoes whose perimeter is 2n + 8 is given 
by 

p4 =1,  p6 =2,  

1 1 ) 4 " - 4 ( 2 n +  1) (2n'] ,  f o r n >  0. Pzn+8  ~ (2n-{-  
\ n j  

This result was recently found again by Enting and Guttmann [135], and Lin and 
Chang [40]. On the other hand, according to the area, there is only an asymptotic 
result [34] 

gp = 2 . 6 7 5 6 4  • ( 2 . 3 0 9 1 4 )  n. 

Following this work, since 1984, we investigated several kinds of polyominoes 
which are related to some properties of convexity. Firstly, we examined the 
parallelogram polyominoes, which are defined by two non-intersecting paths beginning 
and ending at the same points and making only North and East steps (see fig. 5). 
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Fig. 5. A parallelogram polyomino. 

Perimeter 20 
Site perimeter  16 

Area 12 

The number of such polyominoes with perimeter 2n + 2 is known to be the Catalan 
number C,,. We proved [23] that the number of such polyominoes having perimeter 
2n and site perimeter 2 n - k  is 
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2 (n 2)( n ) 
C"'k = k + 2  k +  1 " 

For column-convex polyominoes,  it was well known [36b] that the generating 
function according to the area was rational. In [ 18], the generating function according 
to the bond perimeter is proved to be algebraic. Its expression needs a full page of  
formulas. 

For directed animals, the first study was made by Dhar et al. [27]. Exact results 
were proved successively by Dhar [26], Hakim and Nadal [36], and lastly, using 
combinatorics, by Gouyou-Beauchamps and Viennot [33], and very recently by 
Betrema and Penaud [11]. Finally, the following results are known: 

• the number of  directed animals having area n is 

 lIn 
i=o i i /2 

• the number of  directed animals having area n + 1 with compact source is 3 n. 

However,  no exact result concerning the perimeter is known. 
In the case of  directed column-convex animals [19], one can find exact 

results for the three parameters. The most surprising result was that the number of  
those having an area n is the Fibonacci number of  rank 2(n - 1). For fully diagonal 
compact  animals [19] (i.e. directed and with diagonal compact  (see fig. 6)), Privman 
and Svraki~ [47] gave the generating function according to the area. In [20], we 
gave it according to the two perimeters. 

L ~ L  & k  
• I F  I V  

r I F  

• d ~  d k  

illlll 

All,.  
I I F  

l h  t • i h _ ~ bond perimeter 22 
• 4w ,~w lw site perimeter 10 

area 15 q l V  l i W  q I V  1 1 r ,  I I W  ~ V  . . . . . . . . . . .  

w 

C' 
.... v 

J h  
I W  

Fig. 6. A fully diagonal compact animal and the associated polyomino. 

Another most surprising result was that the number of  such polyominoes  
having one root and a site perimeter equal to n + 1 is 
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d n -  2 n + 1  ) 

This number is the number of ternary trees having n internal nodes. This result has 
also been recently proved by Penaud [44]. 

In fact, in many cases exact results according to the perimeter are well 
known, and according to the area there is only asymptotic or no result. In other 
cases, the situation is just the opposite. For example, the generating function for 
column-convex polyominoes according to the area is rational, but the one according 
to the perimeter is algebraic. This has set us wondering. We have noted that the 
bijection between polyominoes and algebraic languages preserves the parameter 
area when the coding is made according to the perimeter. Thus, since 1987 we have 
searched for some methods relating area and perimeter in polyominoes enumeration. 
In the last section, we will show an extension of the Schtitzenberger methodology 
which allows us to deduce the generating function according to the two parameters 
together. However, first we give one more simple example. 

5. Ano the r  example: The parallelogram polyominoes 

In this section, we explain how to obtain a coding for parallelogram polyominoes 
preserving the four parameters [24, 18]. A path is a sequence of points in PC × PC. 
A step of  a path is a pair of  two consecutive points in the path. A Dyck  

path  is a path w =  (s0, sl . . . . .  Szn) such that s o = (0, 0), Szn= (2n, 0), having 
only steps Nor th -Eas t  (s i = (x, y),  si+ 1= (x + 1, y + 1)) or Sou th -Eas t  (s i = (x, y), 
si+ 1 = (x + 1, y -  1)). A peak  (respectively, trough) is a point s i such that the step 
(si-1,  si) is Nor th -Eas t  (respectively, South-Eas t )  and the step (s i, si+ 1) is Sou th -  
East (respectively, North-East) .  The height  h(si) of a point s i is its ordinate. 

A Dyck  w o r d  is a word w ~ {x, ~}* satisfying the following two conditions: 

(i) Jw lx=]w[~ ;  

(ii) for every factorization w = uv, [ u [~ > I u I~. 

Classically, a Dyck path having length 2n is coded by a Dyck word of length 
2n, w = x I . . .  x2~: each North-East  (respectively, South-East)  step (si_ 1, si) corre- 
sponds to the letter xi = x (respectively, x i = Y). The peaks (respectively, troughs) 
of  a Dyck path correspond to the factors x~ (respectively, Yx) of  the associated Dyck 
word. The Dyck path shown in fig. 7 is coded by the Dyck word 

W = X X X X X X X X X X X X X X X X X X .  

A parallelogram polyomino P can be defined by the two sequences of  integers 
(a 1 . . . . .  a n) and (b 1 . . . . .  bn_ 1), where ai is the number of cells belonging to the 
ith column and ( b  i + l) is the number of cells adjacent to columns i and i + 1. 
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Fig. 7. A Dyck path, 

The Dyck word /.t(P) is the Dyck word associated to the Dyck path 
having n peaks, whose heights (respectively, troughs) are a 1 . . . . .  a n (respectively, 
bl . . . . .  bn-  I)" Note that # associates the parallelogram polyomino of fig. 5 to the 
Dyck path of  fig. 6. It is very easy to prove that # is a bijection preserving the four 
parameters: 

• if p ( P )  = 2n + 2, then ]#(P)  l= 2n; 

• if s ( P ) = k ,  then I # ( P )  l - I # ( P ) l ~ x - l # ( P ) l ~ x x  = k; 

• if  a (P)  = r, then the sum of  the heights of the peaks in #(P)  is r; 

• if the width of P is h, then #(P)  has h factors xx'. 

In the second step, we write the non-commutative equation associated to the 
language 

D = x x  + x D x  + x x D  ,- x D Y D .  

From this equation, taking the commutative image, it is easy to prove that the 
number of  such polyominoes having a bond perimeter 2n + 2 is the Catalan number 

C n -  1 ( 2n ) 
n + l  n " 

Let us now explain how to obtain the generating function according to the 
bond perimeter and the width. First marking with a letter, say t, every factor x~,  
gives 

D = x t x  + x D x  + x t x D  + x D 2 D .  (3) 

From this point, take the commutative image and apply the morphism r/(x) = r/(2) = x, 
r/(t) = t. Then we obtain the equation in commutative variables 

d(x, t) = X2t + x2d(x ,  t) + x2td(x ,  t) + x2d2(x, t), 

in which 

= a n , h  x t 
h>_O n>_O 
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and dn, h is the number of parallelogram polyominoes having width h and perimeter 
2n + 2. From this, it is easy to deduce that 

n I n - 1 )  

In the last section, we will show a transformation which permits us to take into 
account the area using the last equation (3). 

6. q-series and compiling 

Let P be a polyomino and let us suppose that it is coded by a word w such 
that I w I is the perimeter of  P. Let Q(w) be qa(p), where a(P) is the area of  P. Let 
us consider the formal power series 

CL(w )w. 
w r L  

Taking the commutative image, we obtain an enumerating function which turns out 
to be a series in two variables 

f(x;q) = ~ ~ f~,pXnq p, 
n>_O p>O 

in whichfn,p is the number of  polyominoes whose perimeter is 2n and area is p. Note 
that such a generating function is related to q-series in combinatorics. There is a 
vast literature on q-calculus and q-series. A nice introduction to the subject can be 
found in the paper by Foata [28]. Here, we give just  a few features. 

The q-analogue of  an integer n is the polynomial 

[n] = 1 +q+q2+. . .  + qn- l ,  

and the q-analogue of  an n factorial is 

n 

[n]! = 1-I [i]" 
i=1 

In some way, a q-series is a series s in C[[X, q]], 

s(x;q) = ~ an(q)x n, 
n~O 

where an(q) is some function in C[[q]] in which the classical q-analogue [n] comes 
up. The recent book by Andrews [2] introduces some applications of  q-calculus to 
number theory and physics. A very fruitful way of  obtaining some combinatorial 
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interpretation of q-analogues of classical numbers is by replacing the ordinary counting 
of the corresponding objects by q-counting. If C is a set of  objects, the cardinality 
of  C is 

x ~ C  

A q-counting of  the elements of C will be the formal power series 

ICIq = ~ qS(X), 
x ~ C  

where s is a statistics on the elements of  C. 
What we need now is to have a means of  relating grammars to q-series. In 

other words, knowing the word coding the polyomino we must construct its translation, 
which is a word "shuffled" with letter q. 

In computer science, the compiler theory (more precisely the attribute grammars 
which were introduced by Knuth [39]) permits us to associate a translation to a 
word of  an algebraic language. The interest of  the method is that every translation 
is defined locally on every rule (every monomial) of  the grammar (equations). Thus, 
the problem of finding recurrences on a polyomino according to the area is transformed 
into a very local problem on some particular configurations of the polyomino. 

7. q - g r a m m a r s  and  enumera t ion  

In [22], we define what we call a q-grammar. For short, just consider that we 
associate to every monomial of  a non-commutative equation a translation function 

called attribute. Then the pair (S, T), where S is the non-commutative system of 
equations, is called a q-grammar. The q-analogue of the enumerating function L 
(denoted by qL) is the series in N << X u {q} >> defined by 

qL= z(w). 
w~L 

The attribute ~7 is such that if we substitute to each q the value 1, then we merely 
obtain the word w. In many cases, z(w) will appear as a shuffle of  the word w and 
a word of {q}*. Similarly, the function 1L is merely the enumerating function of L. 

The commutative image of the series qL is the series over X vo {q} defined 
by 

ik ql(X ) = Z ~,il ..... i, ( q ) x i l l . . . x~  • 
il _>0,...,ik>_o 

The coefficient X;~ . . . . .  ik(q) is in ¢[{q}] and often rational in q in our examples. The 
series ql(X) is clearly a q-series. Therefore, it ends up as being a natural way of 
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relating a q-series to an algebraic ordinary generating function. Now we give two 
very simple examples. First, in the case of stack polyominoes,  we write the associated 
attribute to each monomial  of  the system of  eqs. (1) and (2): 

T(L) = ql ~(L)i,az(L)az(L1 ) 

T(L) = q x  z(L)  

"c(L) = e 

v(L1) = qxv(L1)  

7:(L1) = e 

(associated to L ---> aLaL1) ,  

(associated to L ~ xL ) ,  

(associated to L ---> e), 

(associated to L 1 --~ xL1),  

(associated to L 1 ---) e). 

From [22], it can be easily proved that ql(X, a) is a solution of  the system 

ql(X, a) = qx  ql(X, a) + a 2 ql(xq, a) qll(X, a) + e, 

qll(X, a) = qx  qll(X, a) + e. 

By solving this system, we obtain the following 

PROPOSITION 2 

The number  of  stack polominoes having perimeter  2p + 2 and area n is the 
coefficient of xPq ~ in the q-series 

S (x ;q )  = ~., 
k>_O 

Xk+lqk+ l (1 - -xqk+ l )  
k + l  
I-I ( 1 - x q i )  2 

i=1 

Using eq. (3), it is also easy to deduce a q-equation for parallelogram polyo- 
minoes. First, we write the associated attribute to each monomial :  

v(D) = q x t x  

"~(D ) = q l ,(L) I, x ~(D ) 7c 

z (D)  = q x t x  v(D) 

"t'(D) = q l ~D)i,x ~'(D) ~ z(D) 

(associated to D---> x t ~ ) ,  

(associated to D --+ xD-x ), 

(associated to D --~ x t ~ D ) ,  

(associated to D ---> x D x D ) .  

From this, we deduce [21] 
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Table 1 

Exact enumeration of polyominoes 

Polyomino Perimeter Area 

Stacks Exercise 

Parallelogram 

Directed convex 

Convex 

Column-convex 

Directed, 
column-convex 

Fully diagonal, 
compact 

Directed 

P61ya 1969 
Kreweras 1970 
Delest, Gouyou-Beauchamps, 
Vauquelin 1987 (site and bond) 

Chang, Lin 1988 
(width and length) 
Bousquet-M61ou 1990 

Delest, Viermot 1984 
Kim, Stanton 1988 
Enting, Guttmann 1988, 1989 
Chang, Lin 1988 
Lin 1988 (width and length) 

Delest 1987 

Delest, Dulucq 1987 
(site and bond) 

Delest, F~dou 1988 (site and bond) 
Penaud 1990 

Euler 1748, Gauss 1863 
Sylvester 1884 
Temperley 1952, 1956 
Wright 1968 
Derrida, Nadal 1984 

(particular case of quasi-partitions: 
Auluck 1951, Andrews 1981), 

P61ya 1969 
Gessel 1980 
Delest, Fedou 1988 (area and width) 

Bousquet-M61ou, Viennot 1990 
(area, width and length) 

(cL~ymptotic results: Klarner, Rivest 1974, 
Bender 1974) 

Bousquet-M61ou 1990 
(area, width and length) 

Klarner 1965, 1967 
Stanley 1978, 1986 
Delest 1987 (area and width) 
Privman, Forgacs 1987 
Privman, SvrakiE 1989 (area and length) 

Delest, Dulucq 1987 
Barcucci, Pinzani, Rodella 1990 

Bhat, Bhan, Singh 1988 
Privman, Svraki~ 1988 

Nadal, Derrida, Vannimenus 1982 
Hakim, Nadal 1982 
Dhar, Phani, Barma 1982 
Dhar 1982, 1983 
Viennot 1985 
Gouyou-Beauchamps, Viennot 1988 

(area and width) 
Betrema, Penaud 1990 
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THEOREM 11 

The number of skew Ferrers diagrams having area n and p columns is the 
coefficient of tPq n in the q-series 

l qt ) qs(t)=(1-q)Cpo ( l - q ) 2  ' 

where q~0(x) is the quotient of two basic Bessel functions 

q l l ( X )  
~Oo ( X ) - 

q lo(X)  ' 

in which the basic Bessel function is defined by 

n + v  

o o  2 
qlv(X) = Z ( - 1 ) h e (  )xn+V 

n=0 [n]! [n+ v]! 

Recently, using this method, Bousquet-M61ou [12] has given a generating 
function for convex  p o l y o m i n o e s  accord ing  to the area.  

8. Conclusion 

In table 1, we give a list of authors of polyomino enumeration which is due 
to Delest, Penaud and Viennot and pictured in [42]. A remarkable fact of all these 
codings with words is that they are very efficient on planar pictures and especially 
for polyominoes. The interest of these codings is the interplay between computer 
science, combinatorics and physics. Finally, we note that most of the results were 
obtained using symbolic calculus (in particular, MAPLE from Waterloo University) 
and also using the book by Sloane [50]. 
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